Mc Graw Hill Key To Algebra Book 4 Polynomials 1st Edition Chapter 3 Opposites Of Polynomials

Mc Graw Hill Key To Algebra Book 4 Polynomials 1st Edition Chapter 3 Opposites Of Polynomials

Page 3 Exercise 1 Answer

Given:

3x2 − 8x + 2

To find:

The opposite polynomial

To find the opposite polynomial:

Given the opposite polynomial

3x²-8x+2

(3x²-8x+2)×(-1).3x²-(-1).8x+(-1).2

(3x²-8x+2)×(-1)=-3x²+8x-2-4
(3x²+5x-2)-(7x²-5x+4)= 3x²-7x²+5x-2-4
(3x²+5x-2)-(7x²-5x+4)=-4x²+10x-6

The opposite polynomial: −3x2 + 8x − 2

Page 3 Exercise 2 Answer

Given:

6a + 7b + 4

To find:

The opposite polynomial

To find the opposite polynomial:

Given,

6a+7b+4
(6a+7b+4)(-1)=(-1).6a+(-1).7b+(-1).4
(6a+7b+4)x(-1)=-6a-7b-4

The opposite polynomial: −6a − 7b − 4

Mc Graw Hill Key To Algebra Book 4 Polynomials 1st Edition Chapter 3 Opposites Of Polynomials

Page 3 Exercise 3 Answer

Given:

5x2 − 2x − 9

To find:

The opposite polynomial

To find the opposite polynomial:

Given

5x2-2x-9

(5x2-2x-9)(-1)=(-1).5x2– (-1).2x- (-1).9

(5x2-2x-9)(-1)=-5x2+2x+9

The opposite polynomial: −5x2 + 2x + 9

Page 3 Exercise 4 Answer

Given:

x2 − 16

To find:

The opposite polynomial

To find the opposite polynomial:

Given

x²-16
(x²-16)x(-1)=(-1).x²-(-1).16
(x²-16)x(-1)=-x²+16

The opposite polynomial: −x2 + 16

Page 3 Exercise 5 Answer

Given:

x5 + x4 + x3 − x2 + x − 1

To find:

The opposite polynomial

To find the opposite polynomial:

Given

⇒ \(\begin{aligned}
& x^5+x^4+x^3-x^2+x-1 \\
& \left(-x^5+x^4+x^3-x^2+x-1\right) x(-1)=(-1) x^5+(-1) \cdot x^4+(-1) \cdot x^3-(-1) \cdot x^2+(-1) \cdot x-(-1) \cdot 1 \\
& \left(x^5+x^4+x^3-x^2+x-1\right) x(-1)=-x^5-x^4-x^3+x^2-x+1
\end{aligned}\)

The opposite polynomial: −x5 − x4 − x3 + x2 − x + 1

Page 3 Exercise 6 Answer

Given:

−7x − 8

To find:

The opposite polynomial

To find the opposite polynomial:

Given

-7x-8

(-7x-8)×(-1)=-(-1).7x-)(-1).8
(_7x-8)x(-1)=7x+8

The opposite polynomial: 7x + 8

Page 3 Exercise 7 Answer

Given:

x2 + 5x − 14

To find:

The opposite polynomial

To find the opposite polynomial:

Given

x²+5x-14

⇒ \(\begin{aligned}
& \left(x^2+5 x-14\right)(-1)=(-1) \cdot x^2+(-1) \cdot 5 x-(-1) \cdot 14 \\
& \left(x^2+5 x-14\right)(-1)=-x^2-5 x+14
\end{aligned}\)

The opposite polynomial: −x2 − 5x + 14

Page 3 Exercise 8 Answer

Given:

−x2 − 5x + 14

To find:

The opposite polynomial

To find the opposite polynomial:

Given

-x2 -5x+14

\(\begin{aligned}
& \left(-x^2-5 x+14\right) \times(-1)=-(-1) x^2-(-1) 5 x+(14) \cdot(-1) \\
& \left(-x^2-5 x+14\right) \times(-1)=x^2+5 x-14
\end{aligned}\)

The opposite polynomial: x2 + 5x − 14

Page 3 Exercise 9 Answer

Given:

(x2+5x−14) + (−x2−5x+14)

To find:

Addition of opposite polynomials

To find the addition of the opposite polynomial:

Given: (x2+5x−14) + (−x2−5x+14)

(x2+5x−14) + (−x2−5x+14)=(1-1)x²+(5-5)x+(-1+1)14
(x2+5x−14)+(−x2−5x+14)=0.x²+0.x+0.14
(x2+5x-14)+(-x2-5x+14)=0

The addition of opposite polynomial: (x2+5x−14) + (−x2−5x+14) = 0

Page 3 Exercise 10 Answer

Given:

(−7x−8) + (7x+8)

To find:

Addition of opposite polynomials

To find the addition of the opposite polynomial:

Given:

(-7x-8)+(7x+8)
(-7x-8)+(7x+8)=(-7+7).x+(-1+1).8
(-7x-8)+(7x+8)=0.x+0.8
(-7x-8)+7x+8)=0

The addition of opposite polynomial: (−7x−8) + (7x+8) = 0

Leave a Comment