enVisionmath 2.0: Grade 6, Volume 1 Chapter 1 Algebra: Understand Numerical And Algebraic Expressions Homework And Practice 7

Chapter 1 Algebra: Understand Numerical And Algebraic Expressions

Homework And Practice 7

Page 47 Exercise 1 Answer

n + n + n Given

= 1n + 1n + 1n Using Identity Property of Multiplication

= (1 + 1 + 1)n Using Distributive Property

= 3n Simplify

Result

3n

Page 47 Exercise 2 Answer

3n + 6 − n − 4 Given

= 3n − n + 6 − 4 Using Commutative Property of Addition

= 3n − 1n + 6 − 4 Using Identity Property of Multiplication

= (3 − 1)n + 6 − 4 Using Distributive Property

= 2n + 2 Simplify

Result

2n + 2

Read And Learn More: enVisionmath 2.0 Grade 6 Volume 1 Solutions

Page 47 Exercise 3 Answer

\(1 \frac{1}{2} z^2+3 \frac{1}{2}+5 z-3+6 z-\frac{1}{2} z^2\) Given

= \(1 \frac{1}{2} z^2-\frac{1}{2} z^2+5 z+6 z+3 \frac{1}{2}-3\) Using Commutative Property of Addition

= \(\left(1 \frac{1}{2}-\frac{1}{2}\right) z^2+(5+6) z+\left(3 \frac{1}{2}-3\right)\) Using Distributive Property

= \(z^2+11 z+\frac{1}{2}\) Simplify

Result

\(z^2+11 z+\frac{1}{2}\)

Page 47 Exercise 4 Answer

4y + 9y Given

= (4 + 9)y Using Distributive Property

= 13y Simplify

Result

13y

Page 47 Exercise 5 Answer

3z + \(\frac{3}{4}\) – 2z Given

= 3z – 2z + \(\frac{3}{4}\) Using Commutative Property of Addition

= (3 – 2)z + \(\frac{3}{4}\) Using Distributive Property

= z + \(\frac{3}{4}\) Simplify

Result

z + \(\frac{3}{4}\)

Page 47 Exercise 6 Answer

25 + 5w − 10 + w Given

= 5w + w + 25 − 10 Using Commutative Property of Addition

= 5w + 1w + 25 − 10 Using Identity Property of Multiplication

= (5 + 1)w + 25 − 10 Using Distributive Property

= 6w + 15 Simplify

Result

6w + 15

Page 47 Exercise 7 Answer

7.7w − 4.6w Given

= (7.7 − 4.6)w Using Distributive Property

= 3.1w Simplify

Result

3.1w

Page 47 Exercise 8 Answer

\(\frac{1}{2} x+\frac{1}{2}+\frac{1}{2} x+\frac{1}{2}\) Given

= \(\frac{1}{2} x+\frac{1}{2} x+\frac{1}{2}+\frac{1}{2}\) Using Commutative Property of Addition

= \(\left(\frac{1}{2}+\frac{1}{2}\right) x+\left(\frac{1}{2}+\frac{1}{2}\right)\) Using Distributive Property

= x + 1 Simplify

Result

x + 1

Page 47 Exercise 9 Answer

12\(y^2\) – 6\(y^2\) Given

= (12 – 6)\(y^2\) Using Distributive Property

= \(6y^2\)Simplify

Result

\(6y^2\)

Page 47 Exercise 10 Answer

\(3 z^3+2 \frac{1}{4}-z^3\) Given

= \(3 z^3-z^3+2 \frac{1}{4}\) Using Commutative Property of Addition

= \(3 z^3-1 z^3+2 \frac{1}{4}\) Using Identity Property of Multiplication

= \((3-1) z^3+2 \frac{1}{4}\) Using Distributive Property

= \(2 z^3+2 \frac{1}{4}\) Simplify

Result

\(2 z^3+2 \frac{1}{4}\)

Page 47 Exercise 11 Answer

6.6m + 3m Given

=(6.6 + 3)m Using Distributive Property

= 9.6m Simplify

Result

9.6m

Page 47 Exercise 12 Answer

100n − 1 − 25n Given

= 100n − 25n − 1 Using Commutative Property of Addition

= (100 − 25)n − 1 Using Distributive Property

= 75n − 1 Simplify

Result

75n − 1

Page 47 Exercise 13 Answer

5x + \(\frac{1}{2}\) + 3y + \(\frac{1}{4}\) + 2x − 2y Given

= \(5 x+2 x+3 y-2 y+\frac{1}{2}+\frac{1}{4}\) Using Commutative Property of Addition

= \((5+2) x+(3-2) y+\left(\frac{1}{2}+\frac{1}{4}\right)\) Using Distributive Property

= \(7 x+y+\frac{2+1}{4}\) Simplify

= 7x + y + \(\frac{3}{4}\) Simplify

Result

7x + y + \(\frac{3}{4}\)

Page 47 Exercise 14 Answer

\(p^2\)+ 2.3 + \(3p^2\) Given

= \(p^2\) + \(3p^2\) + 2.3 Using Commutative Property of Addition

= \(1p^2\) + \(3p^2\) + 2.3 Using Identity Property of Multiplication

= (1 + 3)\(p^2\) + 2.3 Using Distributive Property

= \(4p^2\) + 2.3 Simplify

Result

\(4p^2\) + 2.3

Page 47 Exercise 15 Answer

\(z^4+z^4+z^4+z^4\) Given

= \(1 z^4+1 z^4+1 z^4+1 z^4\) Using Identity Property of Multiplication

= \((1+1+1+1) z^4\) Using Distributive Property

= \(4z^4\) Simplify

Result

\(4z^4\)

Page 48 Exercise 16 Answer

Cost of Small drink = $1.10

Cost of Medium drink = $1.25

Cost of Large drink = $1.50

Number of drinks ordered by Casey′s Family :

Small = 1 and Medium = m

Number of drinks ordered by Anika′s Family :

Medium = m and Large = 1

Algebraic Expression for Total cost of both orders:

Casey′s Family order + Anika′s Family order

= 1 × 1.10 + m × 1.25 + m × 1.25 + 1 × 1.50

= 1.10 + 1.25m + 1.25m + 1.50

Result

1.10 + 1.25m + 1.25m + 1.50

Page 48 Exercise 17 Answer

1.10 + 1.25m + 1.25m + 1.50 Given

= 1.25m + 1.25m + 1.50 + 1.10 Using Commutative Property of Addition

= (1.25 + 1.25)m + 1.50 + 1.10 Using Distributive Property

= 2.50m + 2.60 Simplify

Result

2.50m + 2.60

Page 48 Exercise 18 Answer

2.50m + 2.60 Given

= 2.50(3) + 2.60 Substitute m = 3

= 7.50 + 2.60 Multiply

= $10.10 Add

Result

The total cost of both order is $10.10

Page 48 Exercise 19 Answer

\(\frac{1}{2} y\) . 5 Given

= 5.\(\frac{1}{2} y\) Using Commutative Property of Multiplication

Result

Jan use Commutative Property of Multiplication

Page 48 Exercise 20 Answer

\(n^3\) < \(n^2\) Given

= \((0.5)^3\) < \((0.5)^2\) Substitute n = 0.5

= 0.125 < 0.25 Simplify

Result

\(n^3\) < \(n^2\) is true for 0 < n < 1

Page 48 Exercise 21 Answer

6x − x + 5 Given

= (6 − 1)x + 5 Using Distributive Properties

= 5x + 5 Simplify

Result

6x − x + 5 and 6 + 5 are not equivalent expressions.

Page 48 Exercise 22 Answer

\(\frac{b}{2}\) + \(\frac{b}{2}\) Given

= \(\left(\frac{1}{2}+\frac{1}{2}\right) b\) Using Distributive Property

= b Simplify

Result

b

Page 48 Exercise 23 Answer

\(\frac{1}{2} x+4 \frac{1}{2}+\frac{1}{2} x-\frac{1}{2}\)

= \(\frac{1}{2} x+\frac{1}{2} x+4 \frac{1}{2}-\frac{1}{2}\) Using Commutative Property of Addition

= \(\left(\frac{1}{2}+\frac{1}{2}\right) x+\left(4 \frac{1}{2}-\frac{1}{2}\right)\) Using Distributive Property

= x + 4

Page 48 Exercise 23

Result

Equivalent to: \(\frac{1}{2} x+4 \frac{1}{2}+\frac{1}{2} x+\frac{1}{2}\)

x + 4

Not Equivalent to: \(\frac{1}{2} x+4 \frac{1}{2}+\frac{1}{2} x+\frac{1}{2}\)

\(\frac{1}{2} x\) + 4

x + \(4 \frac{1}{2}\)

x − 4

Leave a Comment