enVisionmath 2.0: Grade 6, Volume 1 Chapter 1 Algebra: Understand Numerical And Algebraic Expressions Homework And Practice 5

Chapter 1 Algebra: Understand Numerical And Algebraic Expressions

Homework And Practice 5

Page 35 Exercise 1 Answer

6a + 4 Evaluate

= \(6\left(\frac{1}{3}\right)+4\) Substitute a = \(\frac{1}{3}\)

= 2 + 4 Multiply

= 6 Add

Result

6

Page 35 Exercise 2 Answer

\(5 a-\frac{2}{3}\) Evaluate

= \(5\left(\frac{1}{3}\right)-\frac{2}{3}\) Substitute a = \(\frac{1}{3}\)

= \(\frac{5}{3}\) – \(\frac{2}{3}\) Multiply

= \(\frac{5-2}{3}\) Write over a common denominator

= \(\frac{3}{3}\) Simplify

= 1 Divide

Result

1

Read And Learn More: enVisionmath 2.0 Grade 6 Volume 1 Solutions

Page 35 Exercise 3 Answer

5d ÷ c + 2 Evaluate

= 5(10) ÷ (5) + 2 Substitute c = 5 and d = 10

= 50 ÷ 5 + 2 Evaluate the parentheses

= 10 + 2 Divide

= 12 Add

Result

12

Page 35 Exercise 4 Answer

\(b^2\) – 9a Evaluate

= \((9)^2-9\left(\frac{1}{3}\right)\) Substitute b = 9 and a = \(\frac{1}{3}\)

= 81 − 3 Evaluate the parentheses

= 78 Subtract

Result

78

Page 35 Exercise 5 Answer

12a + c − b Evaluate

= \(12\left(\frac{1}{3}\right)+(5)-(9)\) Substitute a = \(\frac{1}{3}\), c = 5 and b = 9

= 4 + 5 − 9 Evaluate the parentheses

= 9 − 9 Add

= 0 Subtract

Result

0

Page 35 Exercise 6 Answer

\(\frac{1}{2} d+c^2-b\) Evaluate

= \(\frac{1}{2}(10)+(5)^2-(9)\) Substitute d = 10, c = 5 and b = 9

= 5 + 25 − 9 Evaluate the parentheses

= 30 − 9 Add

= 21 Subtract

Result

21

Page 35 Exercise 7 Answer

\(d^2\) ÷ 2c − b + 3a Evaluate

\((10)^2 \div 2(5)-(9)+3\left(\frac{1}{3}\right)\) Substitute d = 10, c = 5, b = 9 and a = \(\frac{1}{3}\)

= 100 ÷ 10 − 9 + 1 Evaluate the parentheses

= 10 − 9 + 1 Divide

= 1 + 1 Subtract

= 2 Add

Result

2

Page 35 Exercise 8 Answer

3c + \(b^2\) ÷ 27a – d Evaluate

= \(3(5)+(9)^2 \div 27\left(\frac{1}{3}\right)-(10)\) Substitute c = 5, b = 9, a = \(\frac{1}{3}\) and d = 10

= 15 + 81 ÷ 9 − 10 Evaluate the parentheses

= 15 + 9 − 10 Divide

= 24 − 10 Add

= 14 Subtract

Result

14

Page 35 Exercise 9 Answer

28 − \(c^3\) + 6

28 − \(c^3\) + 6

= 28 − \((1)^3\) + 6 Substitute c = 1

= 28 − 1 + 6 Evaluate the power

= 27 + 6 Subtract

= 33 Add

28 − \(c^3\) + 6

= 28 − \((2)^3\) + 6 Substitute c = 2

= 28 − 8 + 6 Evaluate the power

= 20 + 6 Subtract

= 26 Add

28 − \(c^3\) + 6

= 28 − \((3)^3\) + 6 Substitute c = 3

= 28 − 27 + 6 Evaluate the power

= 1 + 6 Subtract

= 7 Add

Page 35 Exercise 9

Result

33 ; 26; 7

Page 35 Exercise 10 Answer

\(\frac{d}{7}\) − 3 + 10

\(\frac{d}{7}\) − 3 + 10

= \(\frac{28}{7}\) − 3 + 10 Substitute d = 28

= 4 − 3 + 10 Divide

= 1 + 10 Subtract

= 11 Add

\(\frac{d}{7}\) − 3 + 10

= \(\frac{49}{7}\) − 3 + 10 Substitute d = 49

= 7 − 3 + 10 Divide

= 4 + 10 Subtract

= 14 Add

\(\frac{d}{7}\) − 3 + 10

= \(\frac{63}{7}\) − 3 + 10 Substitute d = 63

= 9 − 3 + 10 Divide

= 6 + 10 Subtract

= 16 Add

Page 35 Exercise 10

Result

11 ; 14 ; 16

Page 36 Exercise 11 Answer

Page 36 Exercise 11

a) Expression for the amount she earned for h hours sitting one dog and two days sitting the cats

Cost per hour for one Dog × Number of Hours + Cost per day for two Cats × Number of Days

= 7 × h + 15 × 2

= 7h + 30

b) Evaluate the expression for h = 2

7h + 30

= 7(2) + 30 Substitute h = 2

= 14 + 30 Multiply

= $44

Result

a) 7h + 30

b) $44

Page 36 Exercise 12 Answer

One Dog:

Cost per day = $20

Cost for one hour = $7

Cost for two hours = $7 × 2 = $14

Cost for three hours = $7 × 3 = $21

Thus, we can purchase for 2 hours before it would be cheaper than to pay for one day.

Result

2 hours

Page 36 Exercise 13 Answer

65 + 6x Evaluate

= 65 + 6(4) Substitute x = 4

= 65 + 24 Multiply

= 89 Add

Result

It will cost $89 if he surfs for 4 hours.

Page 36 Exercise 14 Answer

Let the number of lessons be x Assume a variable

12x = 20 + 8x Equate both the expressions

12x − 8x = 20 + 8x − 8x Subtract 8x from both sides

4x = 20 Simplify

\(\frac{4x}{4}\) = \(\frac{20}{4}\) Divide each side by 4

x = 5 Simplify

Result

Thus, it will take 5 lessons for Janet′s class to cost the same amount as Rita′s class.

Page 36 Exercise 15 Answer

3g ÷ \(h^2\) + k − n Evaluate

= 3(12) ÷ \((3)^2\) + (10) − (1) Substitute g = 12, h = 3, k = 10 and n = 1

= 36 ÷ 9 + 10 − 1 Evaluate the parentheses

= 4 + 10 − 1 Divide

= 14 – 1 Add

= 13 Subtract

Result

D) 13

Page 36 Exercise 16 Answer

\(\frac{1}{2} x+y^2-4 z \div t\) Evaluate

= \(\frac{1}{2}(10)+(4)^2-4(5) \div(2)\) Substitute x = 10, y = 4, z = 5, and t = 2

= 5 + 16 − 20 ÷ 2 Evaluate the parentheses

= 5 + 16 − 10 Divide

= 21 − 10 Add

= 11 Subtract

Result

C) 11

Leave a Comment