enVisionmath 2.0: Grade 6, Volume 1 Chapter 1 Algebra: Understand Numerical And Algebraic Expressions Guided Practice 6

Chapter 1 Algebra: Understand Numerical And Algebraic Expressions

Guided Practice 6

Page 45 Exercise 1 Answer

The expression 2y – y can be written as y because 2y and y are like terms so we can simplify it by using Properties of Operations.

2y − y

= 2y − 1y Using Identity Property of Multiplication

= (2 − 1)y Using Distributive Property

= y

Result

Because 2y and y are like terms so we can simplify the expression

Read And Learn More: enVisionmath 2.0 Grade 6 Volume 1 Solutions

Page 45 Exercise 2 Answer

\(\frac{1}{2}\)x + \(\frac{1}{2}\)x and x are equivalent because if we simplify the expression \(\frac{1}{2}\)x + \(\frac{1}{2}\)x we will get x

\(\frac{1}{2}\)x + \(\frac{1}{2}\)x

= (\(\frac{1}{2}\) + \(\frac{1}{2}\))x Using Distrtibutive Property

= x

Result

Because the expression \(\frac{1}{2}\)x + \(\frac{1}{2}\)x when simplify will become x

Page 45 Exercise 3 Answer

No, 4\(z^2\) − \(z^2\) and 4 are not equivalent expressions.

4\(z^2\) − \(z^2\)

= (4 − 1)\(z^2\) Using Distributive Property

= 3\(z^2\)

Result

No, 4\(z^2\) − \(z^2\) and 4 are not equivalent expressions.

Page 45 Exercise 4 Answer

x + x + x + x Given

= 1x + 1x + 1x + 1x Use Identity Property of Multiplication

= (1 + 1 + 1 + 1)x Use Distributive Property

= 4x Simplify

Result

4x

Page 45 Exercise 5 Answer

4y − y Given

= 4y − 1y Use Identity Property of Multiplication

= (4 − 1)y Use Distributive Property

= 3y Simplify

Result

3y

Page 45 Exercise 6 Answer

3x + 8 + 2x Given

= 3x + 2x + 8 Using Commutative Property of Addition

= 5x + 8 Combine like terms

Result

5x + 8

Page 45 Exercise 7 Answer

7y − 4.5 − 6y Given

= 7y − 6y − 4.5 Group like terms

= y − 4.5 Combine Like terms

Result

y − 4.5

Page 45 Exercise 8 Answer

4x + 2 − \(\frac{1}{2} x\) Given

= 4x – \(\frac{1}{2} x\) + 2 Group like terms

= \(\left(4-\frac{1}{2}\right) x+2\) Using Distributive Property

= \(3 \frac{1}{2}\)x + 2 Simplify

Result

\(3 \frac{1}{2}\)x + 2

Page 45 Exercise 9 Answer

3 + 3y − 1 + y Given

= 3y + y + 3 − 1 Group like terms

= 3y + 1y + 3 − 1 Using Identity Property of Multiplication

= (3 + 1)y + 3 − 1 Using Distributive Property

= 4y + 2 Simplify

Result

4y + 2

Page 45 Exercise 10 Answer

x + 6x Given

= 1x + 6x Using Identity Property of Multiplication

= (1 + 6)x Using Distributive Property

Step 4

= 7x Simplify

Result

7x

Page 45 Exercise 11 Answer

9y − 3y Given

= (9 − 3)y Using Distributive Property

= 6y Simplify

Result

6y

Page 45 Exercise 12 Answer

2z + \(\frac{1}{4}\) + 2z Given

= 2z + 2z + \(\frac{1}{4}\) Group like terms

= (2 + 2)z + \(\frac{1}{4}\) Using Distributive Property

= 4z + \(\frac{1}{4}\) Simplify

Result

4z + \(\frac{1}{4}\)

Page 45 Exercise 13 Answer

5 + 3w + 3 − w Given

= 5 + 3 + 3w − w Group Like terms

= 5 + 3 + 3w − 1w Using Identity Property of Multiplication

= 5 + 3 + (3 − 1)w Using Distributive Property

= 8 + 2w Simplify

Result

8 + 2w

Page 45 Exercise 14 Answer

5w − 5w Given

= (5 − 5)w Using Distributive Property

= 0 Simplify

Result

0

Page 45 Exercise 15 Answer

2x + 5 + 3x + 6 Given

= 2x + 3x + 5 + 6 Group Like Terms

= (2 + 3)x + 5 + 6 Using Distributive Property

= 5x + 11 Simplify

Result

5x + 11

Page 45 Exercise 16 Answer

10\(y^2\) + 2\(y^2\) Given

= (10 + 2)\(y^2\) Using Distributive Property

= 12\(y^2\) Simplify

Result

12\(y^2\)

Page 45 Exercise 17 Answer

\(\frac{3}{4} z^3+4-\frac{1}{4} z^3\) Given

= \(\frac{3}{4} z^3-\frac{1}{4} z^3+4\) Group Like terms

= \(\left(\frac{3}{4}-\frac{1}{4}\right) z^3+4\) Using Distributive Property

= \(\left(\frac{3-1}{4}\right) z^3+4\) LCM is 4

= \(\left(\frac{2}{4}\right) z^3+4\) Subtract

= \(\frac{1}{2} z^3+4\) Simplify

Result

\(\frac{1}{2} z^3+4\)

Page 45 Exercise 18 Answer

3.4m + 2.4m Given

= (3.4 + 2.4)m Using Distributive Property

= 5.8m Simplify

Result

5.8m

Page 45 Exercise 19 Answer

4.2n + 5 − 3.2n Given

= 4.2n − 3.2n + 5 Group Like Terms

= (4.2 − 3.2)n + 5 Using Distributive Property

= n + 5 Simplify

Result

n + 5

Page 45 Exercise 20 Answer

5\(p^2\) – 5 – 2\(p^2\) Given

= 5\(p^2\) – 2\(p^2\) – 5 Group like terms

= (5 – 2)\(p^2\) – 5 Using Distributive Property

= \(3p^2\) − 5 Simplify

Result

\(3p^2\) − 5

Page 45 Exercise 21 Answer

\(q^5+q^5+q^5\) Given

= \(1 q^5+1 q^5+1 q^5\) Using Identity Property of Multiplication

= (1 + 1 + 1)\(q^5\) Using Distributive Property

= \(3q^5\) Simplify

Result

\(3q^5\)

Page 45 Exercise 22 Answer

\(3 x+\frac{1}{4}+2 y+\frac{1}{4}+7 x-y\) Given

= \(3 x+7 x+2 y-y+\frac{1}{4}+\frac{1}{4}\) Group like terms

= \((3+7) x+(2-1) y+\frac{1+1}{4}\) Using Distributive Property

= 10x + y + \(\frac{2}{4}\) Simplify

= 10x + y + \(\frac{1}{2}\) Simplify

Result

10x + y + \(\frac{1}{2}\)

Page 45 Exercise 23 Answer

1.5\(z^2\) + 4.5 + 6z − 0.3 − 3z + \(z^2\) Given

= 1.5\(z^2\) + \(z^2\) + 6z − 3z + 4.5 − 0.3 Group like terms

= 1.5\(z^2\) + 1z + 6z − 3z + 4.5 − 0.3 Using Identity Property of Multiplication

= (1.5 + 1)\(z^2\) + (6 − 3)z + 4.5 − 0.3 Using Distributive Property

= 2.5\(z^2\) + 3z + 4.2 Simplify

Result

2.5\(z^2\) + 3z + 4.2

Page 46 Exercise 24 Answer

Length = 2y + 1; Width = y

Algebraic Expression:

Perimeter = 2(Length + width) = 2(2y + 1 + y)

Result

2(2y + 1 + y)

Page 46 Exercise 25 Answer

2(2y + 1 + y) Given

= 2(2y) + 2(1) + 2(y) Using Distributive Property

= 4y + 2 + 2y Multiply

= 4y + 2y + 2 Group Like Terms

= 6y + 2 Combine Like Terms

Result

6y + 2

Page 46 Exercise 26 Answer

6y + 2

= \(6\left(2 \frac{1}{2}\right)+2\) Substitute y = \(2 \frac{1}{2}\)

= 6 . \(\frac{5}{2}\) + 2 Multiply

= 15 + 2 Simplify

= 17 Add

Result

The perimeter of the rectangle is 17 units

Page 46 Exercise 27 Answer

\(\frac{1}{2}\)(2x + 7) Given

= \(\frac{1}{2}(2 x)+\frac{1}{2}(7)\) Using Distributive Property

= \(\frac{2x}{2}\) + \(\frac{7}{2}\) Multiply

= x + \(3 \frac{1}{2}\) Simplify

Result

Rodney use Distributive Property to rewrote \(\frac{1}{2}\)(2x + 7) as x + \(3 \frac{1}{2}\)

Page 46 Exercise 28 Answer

n > \(n^2\) Given

= (0.5) > \((0.5)^2\) Substitute n = 0.5

= 0.5 > 0.25 Simplify

Result

n > \(n^2\) is true for 0 < n < 1

Page 46 Exercise 29 Answer

4x − 3x + 2 Given

= (4 – 3)x + 2 Using Distributive Property

= x + 2 Simplify

Result

Yes, Thea is Correct

Page 46 Exercise 30 Answer

\(\frac{a}{3}+\frac{a}{3}+\frac{a}{3}\) Given

= \(\left(\frac{1}{3}+\frac{1}{3}+\frac{1}{3}\right) a\) Using Distributive Property

= \(\frac{3}{3} a\) Add

= a Simplify

Result

a

Page 46 Exercise 31 Answer

2x + 7 + 6x − x

= 2x + 6x − x + 7 Group like terms

= (2 + 6)x − x + 7 Using Distributive Property

= 8x − x + 7 Simplify

= (8x − 1)x + 7 Using Distributive Property

= 7x + 7

Page 46 Exercise 31

Result

Equivalent to: 2x + 7 + 6x − x

7 + 7x and 7x + 7

Not Equivalent to: 2x + 7 + 6x − x

2x + 13 and 14x

Leave a Comment